

Evaporation Extrapolation

By Eric Muller

Figure out the evaporation rate in a cup of water. Then estimate the total evaporation rate of a nearby fresh water body such as a lake or reservoir by extrapolating your data.

Materials:

- Scientific/analytical scale or balance that is accurate to at least a milligram
- o Optional: `
 - A microgram would be even better
 - A glass enclosure would be advisable too
- Cup lightweight (paper or plastic)
- Tap or freshwater
- o Stopwatch

To do and notice:

- 1. Zero out your balance.
- 2. Pour a few grams of water into your cup
- 3. Measure the diameter of the water in your cup.
- 4. Note the diameter of the water in the cup here: _____ cm
- 5. Place the cup of water into the scale.
- 6. Note the mass of the water here: ______g (starting mass)
- 7. Start your stopwatch and time for 1 to 10 minute.
- 8. How many minutes did you time: ______minutes
- 9. Convert minutes to seconds: _______seconds
- 10. Note the mass of the water after timing here: _____g (final mass)

11. Calculate the rate of evaporation in the cup of water:	LEVEL FOR USE 1
a. Staring mass – final mass = change in mass	369337.
ggg	Apresent
b. Rate in cup = change in mass / total seconds (step 9):	g/s
12. Radius of the water in the cup: Diameter / $2 = \cm$	
13. Total surface area of water in the cup: $\pi r^2 = \underline{\qquad} cm^2$	
14. Evaporation rate per cm ² in your cup: Rate from step 11b / area from step 13 =g/s*cm ²	
Extrapolating your data to a larger body of water.A. Choose a local body of water and assume conditions at this location ar as in your classroom (or where your analytical balance is located).	e the same
 B. Almost all significant lakes and reservoirs have a recorded surface area. Search the Internet for this information. If you can't find your information, use this opportunity to estimate area using a mapping or "satellite viewing" web site such as Google maps or a GIS program to get this information. 	
C. Write the name of your chosen body of fresh water here:	Crystal Springs
D. Total surface area of your body of water: (usually in acres, hectares, sq. feet or sq. meters)	Reservoir near San Francisco has a surface area of 1,323 acres (535 ha)
E. Convert the body of water's total surface area into cm ² :	
cm^2	
F. Using your calculated evaporation rate per cm ² in step 12, find the est total evaporation per second from your body of water:	timated

Step 12 rate x Area in step E. = _____ g

G. Convert gram in step F. to kilograms.

Divide step F by 1000: _____kg per second

H. Since the density of fresh water is 1, your answer from step G. is also the number

of liters per second: _______liters per second.

Note: Evaporation is based on many factors such as:

Humidity, temperature, airflow, air pressure and impurities in the water In this activity, you are ignoring all these factors. You are just using data from a cup of water to make a good estimate of what's going on around you.

What's going on ?:

Evaporation is a surface phenomenon of liquids such as water. When a molecule of water near the surface has enough energy, it will leave the surface and go into the atmosphere.

The amazing thing about a good analytical scale, especially one that registers to several digits, is that you can see the mass loss in a very short period of time.... like in the course of a few seconds or even in fractions of a second (we used a scale that registers to .0001g).

Extrapolating your data to large bodies of water shows that evaporation causes a loss of water to the atmosphere at an astonishing rate. Usually, your calculations underestimate the loss, by a significant amount too!

Reference:

http://en.wikipedia.org/wiki/Evaporation

Local reservoir: Crystal Springs http://en.wikipedia.org/wiki/Crystal_Springs_Reservoir